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COMMENT 

Energy and attractors in parallel Potts dynamics 
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+ BBN Systems and Technologies, Cambridge, MA 02238, USA 
5 Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 

Received 19 July 1989 

Abstract. We derive an energy function for multibit threshold automata networks (e.g. the 
Potts model) updated in parallel, and show that their dynamics admit as attractors fixed 
points and limit cycles of length 2. We compare this result with similar known results on 
networks of binary automata (e.g. the lsing model). 

Automata networks have been enjoying growing attention as tools for modelling 
computation, learning, optimisation, and the complexity and organisation emerging 
from the iteration of simple operations between simple elements (see, e.g., Bienenstock 
er af 1986 and Denker 1986). We focus here on networks with dynamics governed by 
majority rules. Such networks are nets of interconnected elements, where each element 
(or site) i has an internal state x, = 1, .  . . , p  and interacts in discrete time steps with 
other elements j from some neighbourhood U, of i. In turn, it updates its own state 
according to a majority rule whereby each site 'aligns' its state to the most prevailing 
state in the neighbourhood. 

The dynamical behaviour depends crucially on whether the sites are updated 
sequentially or synchronously. In sequential updating, the majority-rule dynamics 
corresponds to a Monte Carlo evolution of a lattice system at zero temperature, and 
the system ends up in a (generally local) minimum of the Potts energy: 

E s c q ( { X N  = -43 c c a(x:,  .:, (1) 
I /EL, ,  

where J is a coupling constant and the Kronecker 6 is 1 when its two arguments are 
equal and 0 otherwise. For p = 2 ,  E reduces to the Ising energy (up to an additive 
constant). 

When all the sites are updated in parallel, the functional given in (1)  is no longer 
monotonously decreasing. On the other hand, the following 'synchronous' energy: 

never increases under the dynamics; in other words, it is a Lyapunov function. To 
show in a general way that Esrn is indeed a Lyapunov function, we consider a network 
defined on an arbitrary undirected finite graph, where the connectivity number can 
vary from site to site, with values x, evolving under the following parallel dynamics: 

x:+' = max{s; card{xi = s ; j  E v i }  = max,,,,,{xJ = r ;  j E U,}}. (3) 

i: Permanent address: Departamento de Matematicas, Escuela de Ingenieria, Universidad de Chile, Casilla 
170-Correo 3, Santiago, Chile. 
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This formula simply means that at each time step, each site will assume the state most 
represented in the neighbourhood. The parallel nature of the dynamics is expressed 
in the fact that all the sites i update their state as a function of the unupdated states 
of their neighbours, all taken at the same time t .  

Ties in the determination of the most represented state (i.e. in the inner max function 
in (3)) are broken by arbitrarily choosing the state with the higher s value among the 
most represented (hence the outer max function in the formula). This way of breaking 
ties favours high magnetisation. An alternative way consists of modifying the evolution 
rule by first partitioning the graph in two sets of sites and breaking ties in such a way 
that the highest value s is in one set but the lowest is in the other set. 

Expressing Esyn, given by (2), in the form 
Esyn = -45 card{x:-' = x:; j E U,} (4) 

l 

and replacing x: by its value from the update rule (3), we can write Esyn in a form 
that depends on one time step ( t  - 1) only: 
Esyn = -45 c max{s; card{xi-' = s; j E U,} = max card{xi-' = r ;  j E U,}}. ( 5 )  

r 

The monotonous decrease of E is made evident by considering the difference: 

= -E (-card{xj-'=xj; j E  ui}+card{xj-'=xj-2; j E  U;}). ( 6 )  
i 

But by definition of the updating rule, 

and therefore: 
A,E 0. 

This quantity is now always non-positive: from the definition of the evolution rule 
(3), the sum with the minus sign is larger than or equal to that with the plus sign. 
Notice, however, that Esyn written as (4) can reach its minimum and remain there for 
different configurations during transient steps before the attractor is reached. This can 
be seen in the following example, which shows three successive steps of a site with 
five neighbours: 
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We have in this example: 
card{xJ-' = x: = 4) = card{x;-' = - 1 } = 2  - 

/ 

t 

( 9 )  
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and the ith term of A,E in (8) vanishes, although the dynamics is still in a transient 
phase: x : - ~  # x:. 

Adding a 'magnetic field' of strength l / p  in the down direction defines a new energy: 

which is now a Lyapunov function that reaches its minimum for a unique 'point in 
phase-space' (sets of configurations {x,} taken at two successive time steps). In  the 
'partitioned' tie breaking method, the external magnetic field should point down at  
those sites where s is chosen large but point up  for the low-s choices. Indeed, the 
difference is 

1 
A & * =  A,E - - C ( X : - X : - ~ )  

P '  

with the ith term being 

(LIE*), = ( A S ) ,  -(1/p)(x:-x:-2). (12) 

If x: # x:-* and ( A , E ) ,  = 0 (i.e. the tie case), then, with the magnetic field, we must 
have x: > x : - ~ ,  and thus (A,E*), < O .  If, on the other hand, x: # x : - ~  but (ArE), # 0, 
we get in a similar way (A,E), S 1 and therefore 

(13) ( A , E ) ,  S 1 - ( l / p ) ( l  - p ) =  - l / p  < O .  

We conclude that in all cases 

A,E*SO iff xl-' z x:, 

We also conclude from the very existence of the Lyapunov function E* that for all 
initial configurations on a finite graph, the parallel dynamics admits for attractors 
either fixed points or two-cycles. 

Let us now compare this result with what is known in the special case p = 2, (the 
Ising model). Using spin-glass couplings J,J that can depend on the site pairs (with 
J ,  = J,,), we found (Coles and  Vichniac 1986b) that the p = 2 synchronous energy can 
be written as: 

where the values x, form the components of a vector x, and where / /  * 1 1 '  is the usual 
1-norm (in the 'Manhattan metric') in R". This norm, of course, does not apply on 
the network itself, but on its configuration space. It contrasts with the Lyapunov 
function of the seqential case (the Hopfield energy), which can be written as a scalar 
product in the same space: 

Other functions, such as Esyn, involving arguments taken at  two successive time steps 
have been used in the context of neural networks (Coles 1983, Coles et al 1985) and  
as invariants for reversible rules of the Q2R type (Pomeau 1984, Coles and Vichniac 
1986a). 
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In both the Ising and Potts cases, the geometric interpretation of the energy is (up 
to an additive constant) the total length of the interfaces between the various clusters. 
Starting the deterministic (i.e. T = 0) dynamics out of an initially random lattice ( T  
infinite) describes a quenching process with the competitive growth of clusters of p 
different kinds. It is known that in the Ising case ( p  = 2), the parallel updating leads 
to unwanted oscillations: neighbouring spins in opposite states ‘oversmart’ themselves: 
they simultaneously flip their states in an attempt to align with their neighbours. The 
interfaces between clusters do not decrease. They can actually increase, forming, in 
the case of the square lattice, oscillating checkerboard patterns (Vichniac 1984, Hayes 
1984). Furthermore, it is also known that the oscillations can be damped if numerical 
intermediate states are introduced between the two Ising states (Vichniac 1984). The 
present work shows that, somewhat surprisingly, when physical states are added at 
each site in the form of the Potts model (with p > 2), the oscillations are nor necessarily 
damped and their maximum period is again 2. The oscillations and their period 2 are 
attributes of the synchronous updating scheme, not of the number of physical states 
at each site. 

Let us finally point that the dynamics defined by (3) decreases the value of the 
energy in a steepesr descent fashion. On the other hand, slower dynamics (for instance 
‘voting’ for the second most represented state) are more complex: in one dimension, 
they are found (Goles 1989) to be characteristic of ‘class 4’ behaviour of Wolfram’s 
taxonomy (Wolfram 1984). 
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